Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Surface Grafted Polymer Brushes : A Versatile Platform for Antibacterial Applications
 
doctoral thesis

Surface Grafted Polymer Brushes : A Versatile Platform for Antibacterial Applications

Ibanescu, Sorin Alexandru  
2015

Various strategies have been proposed and applied to prepare antibacterial materials able to respond to different requirements specific for antibacterial applications. Among diverse strategies the approach based on substrates modification with polymer brushes proved both versatile and reliable. Polymer brushes are thin polymeric films with all chains tethered with one end on a surface and since the development of SI-ATRP they can be obtained with good control over conformation, architecture and thickness. Therefore polymer brush coatings can be tailored with desired and fine tuned properties as functional biomaterials for a large variety of biomedical applications. The main objective of this Thesis was to develop versatile platforms for antibacterial applications based on polymer brush surfaces able to prevent bacteria adhesion and/or to kill bacteria on contact or through bacteria triggered controlled release of an antimicrobial compound. Moreover, novel systems based on polymer brushes have been synthesized as hydrolytically degradable platforms for potential biomedical applications. Chapter 1 analyses the mechanism of the biofilm formation and different strategies developed to inhibit bacterial adhesion, to prevent biofilm formation and proliferation and to reduce hospital-acquired bacterial infection. Various approaches for surfaces modification with polymer brushes are discussed, emphasizing on the possibilities of tailoring their antibacterial properties. Chapter 2 explores, for the first time, S. Epidermidis adhesion on PHEMA or POEGMA brushes on a wide range of grafting densities and film thicknesses. Both brushes carry functional groups on each repeating unit and are more appropriate for the development of platforms for novel biomedical applications. In Chapter 3 the possibility to obtain dual functional coatings combining the bacteria repellent character of the polymer brush with the possibility to selectively immobilize antibiotics is investigated. The antibacterial activity against S. Epidermidis of vancomycin modified surfaces is analyzed as a function of polymer brush structure and functional group used for coupling of the antibiotic. The aim of Chapter 4 is to develop systems based on polymer brush able to release an active compound in the presence of selected bacterial signals. A dye is coupled to PHEMA brushes via a specific linker sensitive to autolysins or beta-lactamase and its controlled release is monitored as a function of brush architecture. Finally, Chapter 5 focuses on improving existing hydrolytically degradable polymer brushes by neighboring group participation of a catalytic moiety. Moreover, the possibility to develop novel hydrolytically degradable polymer brushes based on polyphosphoesters is reported. The two studied systems are suitable as building blocks for platforms with antibacterial applications.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH6565.pdf

Access type

openaccess

Size

8.5 MB

Format

Adobe PDF

Checksum (MD5)

506c74f68339c6d05174686b9db65486

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés