Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Genomic insights into the coupling of a Chlorella-like microeukaryote and sulfur bacteria in the chemocline of permanently stratified Lake Cadagno
 
research article

Genomic insights into the coupling of a Chlorella-like microeukaryote and sulfur bacteria in the chemocline of permanently stratified Lake Cadagno

Saini, Jaspreet S.
•
Manni, Mose
•
Hassler, Christel  
Show more
April 8, 2023
Isme Journal

Meromictic Lake Cadagno is a permanently stratified system with a persistent microbial bloom within the oxic-anoxic boundary called the chemocline. The association between oxygenic and anoxygenic photosynthesis within the chemocline has been known for at least two decades. Although anoxygenic purple and green sulfur bacteria have been well studied, reports on oxygenic phytoplankton have remained sparse since their discovery in the 1920s. Nearly a century later, this study presents the first near-complete genome of a photosynthetic microbial eukaryote from the chemocline of Lake Cadagno, provisionally named Chlorella-like MAG. The 18.9 Mbp nuclear genome displays a high GC content (71.5%), and the phylogenetic placement suggests that it is a novel species of the genus Chlorella of Chlorophytes. Functional annotation of the Chlorella-like metagenome-assembled genome predicted 10,732 protein-coding genes, with an approximate 0.6% proportion potentially involved in carbon, sulfur, and nitrogen (C, N, and S) metabolism. In addition to C4 photosynthesis, this study detected genes for heat shock proteins (HSPs) in the Chlorella-like algae, consistent with the other Chlorella species. Altogether, the genomic insights in this study suggest the cooperation of photosynthetic algae with phototrophic sulfur bacteria via C, N, and S metabolism, which may aid their collective persistence in the Lake Cadagno chemocline. Furthermore, this work additionally presents the chloroplast genome of Cryptomonas-like species, which was likely to be presumed as cyanobacteria in previous studies because of the presence of phycobilisomes.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

s41396-023-01396-y.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

4.22 MB

Format

Adobe PDF

Checksum (MD5)

8d8ef3f4c5b8d9f711d0ef7d9fbe100e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés