Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform
 
research article

Experimental investigation of the propagation properties of Bloch surface waves on dielectric multilayer platform

Dubey, R.
•
Barakat, E.
•
Häyrinen, M.
Show more
2017
Journal of the European Optical Society-Rapid Publications

Background: The periodic dielectric multilayers sustaining Bloch surface waves have been proposed as a platformfor the sensing applications and the two dimensional integrated optics. In this paper, we present the experimental and theoretical investigation of propagation properties of Bloch surface waves, for example propagation length and refractive index of the surface mode, at the interface of a dielectric multilayer platform. We use thin layers (~λ/25) of titanium dioxide as an additional layer of high index material. Methods: We exploit multi-heterodyne scanning near-field optical microscopy and total internal reflection configuration as a near-field and far-field characterization tools. Results: The longest propagation length is achieved when the multilayer is designed to have the dispersion curve positioned close to the middle of the photonics band gap. We measure a Bloch surface wave mode of propagation length 3.24 mm and of an effective refractive index contrast 0.15. Conclusions: The experimental results are in conformity with theoretical results. This study paves a way to realize efficient and compact two dimensional components and systems.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

document(1).pdf

Type

Publisher's Version

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2 MB

Format

Adobe PDF

Checksum (MD5)

4930b57d99e6bb059cd99caed0f03069

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés