Defect Suppression in Oriented 2D Perovskite Solar Cells with Efficiency over 18% via Rerouting Crystallization Pathway
Vertically oriented 2D perovskites exhibit promising optoelectronic properties and intrinsic stability, but their photovoltaic application is still limited by the low power conversion efficiency (PCE) compared to 3D analogs. Here, a new crystallization pathway (RCP) is reported to suppress defects in vertically oriented 2D perovskite caused by its over-rapid self-assembly behavior. By controlling the specific adsorption of an ammonium halide additive on different perovskite crystal planes, the dynamic preferred growth of (111) plane is intentionally restrained, and the minority (202) planes emerge as secondary nucleation sites to stimulate the creation of large grains. As the halogen-regulated deprotonation of ammonium proceeds, the (111) crystal plane gradually recovers its growth dominance, and a vertically oriented 2D perovskite film finally forms with high homogeneity, reduced trap density of states, and desired carrier transport/collection kinetics. Solar cells using RCP-2D films show a highly reproducible and stable PCE reaching 18.5% with a high fill factor of 83.4%. These findings provide critical missing information on simultaneously achieving highly oriented and less defective 2D perovskite films for excellent device performance.
WOS:000589543600001
2021
11
1
2002966
REVIEWED