Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Complexity Certification of the Fast Alternating Minimization Algorithm for Linear MPC
 
research article

Complexity Certification of the Fast Alternating Minimization Algorithm for Linear MPC

Pu, Ye  
•
Zeilinger, Melanie N.
•
Jones, Colin N.
2017
Ieee Transactions On Automatic Control

In this technical note, the fast alternating minimization algorithm (FAMA) is proposed to solve model predictive control (MPC) problems with polytopic and second-order cone constraints. Two splitting strategies with efficient implementations for MPC problems are presented. We derive computational complexity certificates for both splitting strategies, by providing complexity upper-bounds on the number of iterations required to provide a certain accuracy of the dual function value and, most importantly, of the primal solution. This is of particular relevance in the context of real-time MPC in order to bound the required on-line computation time. We further address the computation of the complexity bounds, requiring the solution of a non-convex minimization problem. Finally, we demonstrate the performance of FAMA compared to other splitting methods using a quadrotor example.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Preprint.pdf

Access type

openaccess

Size

373.22 KB

Format

Adobe PDF

Checksum (MD5)

ed14e35d5a5e468f9bdf1d4316529a8e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés