Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Efficient Fail-Stop Signatures from the Factoring Assumption
 
conference paper

Efficient Fail-Stop Signatures from the Factoring Assumption

Mashatan, Atefeh
•
Ouafi, Khaled  
2011
Proceedings of the 14th Information Security Conference (ISC 2011)
The 14th Information Security Conference (ISC 2011)

In this paper, we revisit the construction of fail-stop signatures from the factoring assumption. These signatures were originally proposed to provide information-theoretic-based security against forgeries. In contrast to classical signature schemes, in which signers are protected through a computational conjecture, fail-stop signature schemes protect the signers in an information theoretic sense, i.e., they guarantee that no one, regardless of its computational power, is able to forge a signature that cannot be detected and proven to be a forgery. Such a feature inherently introduced another threat: malicious signers who want to deny a legitimate signature. Many construction of fail-stop signatures were proposed in the literature, based on the discrete logarithm, the RSA, or the factoring assumptions. Several variants of this latter assumption were used to construct fail-sop signature schemes. Bleumer et al. (EuroCrypt ’90) proposed a fail-stop signature scheme based on the difficulty of factoring large integers and Susilo et al. (The Computer Journal, 2000) showed how to construct a fail-stop signature scheme from the so-called “strong factorization” assumption. A later attempt by Schmidt-Samoa (ICICS ’04) was to propose a fail-stop signature scheme from the p2q factoring assumption. Compared to those proposals, we take a more traditional approach by considering the Rabin function as our starting point. We generalize this function to a new bundling homomorphism while retaining Rabin’s efficient reduction to factoring the modulus of the multiplicative group. Moreover, we preserve the efficiency of the Rabin function as our scheme only requires two, very optimized, modular exponentiations for key generation and verification. This improves on older constructions from factoring assumptions which required either two unoptimized or four exponentiations for key generation and either two unoptimized or three modular exponentiations for verifying.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

failStop.pdf

Access type

openaccess

Size

116.62 KB

Format

Adobe PDF

Checksum (MD5)

35c8525b1a0fc58bcbf051e226301051

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés