Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Neural-prior stochastic block model
 
research article

Neural-prior stochastic block model

Duranthon, Odilon  
•
Zdeborová, Lenka  
September 1, 2023
Machine Learning-Science And Technology

The stochastic block model (SBM) is widely studied as a benchmark for graph clustering aka community detection. In practice, graph data often come with node attributes that bear additional information about the communities. Previous works modeled such data by considering that the node attributes are generated from the node community memberships. In this work, motivated by a recent surge of works in signal processing using deep neural networks as priors, we propose to model the communities as being determined by the node attributes rather than the opposite. We define the corresponding model; we call it the neural-prior SBM. We propose an algorithm, stemming from statistical physics, based on a combination of belief propagation and approximate message passing. We analyze the performance of the algorithm as well as the Bayes-optimal performance. We identify detectability and exact recovery phase transitions, as well as an algorithmically hard region. The proposed model and algorithm can be used as a benchmark for both theory and algorithms. To illustrate this, we compare the optimal performances to the performance of simple graph neural networks.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Duranthon_2023_Mach._Learn. _Sci._Technol._4_035017.pdf

Type

N/a

Access type

openaccess

License Condition

n/a

Size

1.01 MB

Format

Adobe PDF

Checksum (MD5)

c9b91101368c0aac5b204ec5b7536669

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés