Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. High Resolution Air Pollution Maps in Urban Environments Using Mobile Sensor Networks
 
conference paper

High Resolution Air Pollution Maps in Urban Environments Using Mobile Sensor Networks

Marjovi, Ali  
•
Arfire, Adrian  
•
Martinoli, Alcherio  
2015
2015 International Conference on Distributed Computing in Sensor Systems
The 11th International Conference on Distributed Computing in Sensor Systems (DCOSS 2015)

We propose three modeling methods using a mobile sensor network to generate high spatio-temporal resolution air pollution maps for urban environments. In our deployment in Lausanne (Switzerland), dedicated sensing nodes are anchored to the public buses and measure multiple air quality parameters including the Lung Deposited Surface Area (LDSA), a state of the art metric for quantifying human exposure to ultrafine particles. In this paper, our focus is on generating LDSA maps. In particular, since the sensor network coverage is spatially and temporally dynamic, we leverage models to estimate the values for the locations and times where the data are not available. We first discretize the area topologically based on the street segments in the city and we then propose the following three prediction models: i) a log-linear regression model based on nine meteorological (e.g., temperature and precipitations) and gaseous (e.g., NO2 and CO) explanatory variables measured at two static stations in the city, ii) a novel network-based log-linear regression model that takes into account the LDSA values of the most correlated streets and also the nine explanatory variables mentioned above, iii) a novel Probabilistic Graphical Model (PGM) in which each street segment is considered as one node of the graph, and inference on conditional joint probability distributions of the nodes results in estimating the values in the nodes of interest. More than 44 millions of geo- and time- stamped LDSA measurements (i.e., more than 14 months of real data) are used in this paper to evaluate the proposed modeling approaches in various time resolutions (hourly, daily, weekly and monthly). The results show that the three approaches bring significant improvements in R2 , RMSE and FAC metrics compared to a baseline K-Nearest Neighbor method.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Marjovi_DCOSS_2015_2.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

1.27 MB

Format

Adobe PDF

Checksum (MD5)

919b1e8e307cd2ec823d09ff2ed3f780

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés