Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Reports, Documentation, and Standards
  4. Combining Wavelet-domain Hidden Markov Trees with Hidden Markov Models
 
report

Combining Wavelet-domain Hidden Markov Trees with Hidden Markov Models

Keller, Katrin
•
Ben-Yacoub, Souheil
•
Mokbel, Chafic
1999

In this paper, the concept of Wavelet-domain Hidden Markov Trees (WHMT) is introduced to Automatic Speech Recognition. WHMT are a convenient means to model the structure of wavelet feature vectors, as wavelet coefficients can be interpreted as nodes in a binary tree. By the introduction of hidden states in each node, non-Gaussian statistics inherent in wavelet features can be modeled. At the same time, correlations between neighboring coefficients in the time-frequency plane are accommodated. Phoneme probabilities obtained using the WHMT and wavelet features are then combined at the state level with those obtained by Gaussian distributions in conjunction with MFCCs, and fed into conventional Hidden Markov Models. Preliminary experiments show the potential advantages of this novel approach.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

rr99-14.pdf

Access type

openaccess

Size

270.13 KB

Format

Adobe PDF

Checksum (MD5)

79cf62779609336a023fbf8deb1fff39

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés