Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Path planning versus cue responding: a bioinspired model of switching between navigation strategies
 
research article

Path planning versus cue responding: a bioinspired model of switching between navigation strategies

Dollé, Laurent
•
Sheynikhovich, Denis
•
Girard, Benoît
Show more
2010
Biological Cybernetics

In this paper we describe a new computational model of switching between path-planning and cue-guided navigation strategies. It is based on three main assumptions: (i) the strategies are mediated by separate memory systems that learn independently and in parallel; (ii) the learning algorithms are different in the two memory systems: the cue-guided strategy uses a temporal-difference (TD) learning rule to approach a visible goal, whereas the path-planning strategy relies on a place-cell based graph-search algorithm to learn the location a hidden goal; (iii) a strategy selection mechanism uses TD-learning rule in order to choose the most successful strategy based on past experience. We propose a novel criterion for strategy selection based on the directions of goal-oriented movements suggested by the different strategies. We show that the selection criterion based on this `common currency' is capable of choosing the best among TD-learning and planning strategies and can be used to solve navigational tasks in continuous state and action spaces. The model has been successfully applied to reproduce rat behavior in two water-maze tasks in which the two strategies were shown to interact. The model was used to analyze competitive and cooperative interactions between different strategies during these tasks as well as relative influence of different types of sensory cues.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

DolleShGiChGu10_1.pdf

Access type

openaccess

Size

1.36 MB

Format

Adobe PDF

Checksum (MD5)

221d5be3305da2ab1bcb7f5819e42985

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés