Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. An asymptotic result for Brownian polymers
 
research article

An asymptotic result for Brownian polymers

Mountford, Thomas  
•
Tarres, Pieffe
2008
Annales De L Institut Henri Poincare-Probabilites Et Statistiques

We consider a model of the shape of a growing polymer introduced by Durrett and Rogers (Probab. Theory Related Fields 92 (1992) 337-349). We prove their conjecture about the asymptotic behavior of the underlying continuous process X-t (corresponding to the location of the end of the polymer at time t) for a particular type of repelling interaction function without compact support.

  • Details
  • Metrics
Type
research article
DOI
10.1214/07-AIHP113
Web of Science ID

WOS:000256203600003

Author(s)
Mountford, Thomas  
Tarres, Pieffe
Date Issued

2008

Published in
Annales De L Institut Henri Poincare-Probabilites Et Statistiques
Volume

44

Start page

29

End page

46

Subjects

self-interacting diffusions

•

repulsive interaction

•

superdiffusive process

•

almost sure law of large numbers

•

Reinforced Random-Walk

•

Self-Interacting Diffusions

•

Attracting Diffusions

•

Phase-Transition

•

Limit-Theorems

•

Markov-Chains

•

Edge

•

Convergence

•

Recurrence

•

Behavior

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
PRST  
Available on Infoscience
November 30, 2010
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/61363
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés