Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Impact of evapotranspiration on the local microclimate
 
conference paper

Impact of evapotranspiration on the local microclimate

Mauree, Dasaraden  
•
Coccolo, Silvia  
•
Scartezzini, Jean-Louis  
2019
Journal of Physics: Conference Series
CISBAT 2019 | Climate Resilient Cities – Energy Efficiency & Renewables in the Digital Era

Climate change is having and will have drastic consequences for high density populated areas such as cities. There is thus a need to develop more tools to evaluate new strategies for adaptation to and mitigation of changing temperatures. Additional functionalities were integrated in the urban energy modelling tool CitySim to include an evapotranspiration process and to integrate low rise vegetation as well as trees. In the process, the Canopy Interface Model (CIM) – previously coupled with CitySim – was further developed to integrate the evapotranspiration process and to analyse its impact on the local microclimate. Tvapotranspiration as well as the surface temperature are computed in CitySim and the values are then used as boundary conditions in CIM to calculate the vertical profiles of wind speed, temperature and humidity. Using the campus of the EPFL in Lausanne, Switzerland as a case study, it was demonstrated that the ground evaporative cooling can be an effective mitigation measure for decreasing locally the urban heat island intensity. In future studies, other strategies such as reflective asphalt, will be combined with the evaporative cooling strategies, to determine the most effective action measures that could be easily implemented.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Mauree_2019_J._Phys.__Conf._Ser._1343_012009.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

714.17 KB

Format

Adobe PDF

Checksum (MD5)

67c5a1e39371188e153cf80f240fdf9b

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés