Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Sampling Continuous-time Sparse Signals: A Frequency-domain Perspective
 
research article

Sampling Continuous-time Sparse Signals: A Frequency-domain Perspective

Bejar Haro, Benjamin
•
Vetterli, Martin  
2018
IEEE Transactions on Signal Processing

We address the problem of sampling and reconstruction of sparse signals with finite rate of innovation. We derive general conditions under which perfect reconstruction is possible for sampling kernels satisfying Strang-Fix conditions. Previous results on the subject consider two particular cases; when the kernel is able to reproduce (complex) exponentials, or when it has the polynomial reproduction property. In this work we extend such analysis to the case where both properties could be found in the sampling kernel and show that the former two sitations can be regarded as special cases. As a result of our analysis, we provide general conditions under which perfect recovery in the noiseless case is possible. In practice, a given sampling kernel might not satisfy Strang-Fix conditions. When dealing with arbitrary sampling kernels we propose a unified view for sampling and reconstruction in the frequency domain. Our formulation generalizes previous approaches and provides new insights for devising optimal reconstruction schemes. We also propose a novel algorithm for denoising treating the problem as a particular instance of structured low-rank approximation. Finally, we provide some numerical experiments and a comparison between different state-of-the-art methods showing the improved estimation performance of the proposed approach.​

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

FrequencyDomainFRI.zip

Access type

openaccess

Size

23.13 KB

Format

ZIP

Checksum (MD5)

a43edbfc65bd1cf3a5cdbe9a6506b533

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés