Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Inferring the flow properties of epithelial tissues from their geometry
 
research article

Inferring the flow properties of epithelial tissues from their geometry

Popovic, Marko  
•
Druelle, Valentin
•
Dye, Natalie A.
Show more
March 1, 2021
New Journal Of Physics

Amorphous materials exhibit complex material properties with strongly nonlinear behaviors. Below a yield stress they behave as plastic solids, while they start to yield above a critical stress sigma(c). A key quantity controlling plasticity which is, however, hard to measure is the density P(x) of weak spots, where x is the additional stress required for local plastic failure. In the thermodynamic limit P(x) similar to x(theta) is singular at x = 0 in the solid phase below the yield stress sigma(c). This singularity is related to the presence of system spanning avalanches of plastic events. Here we address the question if the density of weak spots and the flow properties of a material can be determined from the geometry of an amorphous structure alone. We show that a vertex model for cell packings in tissues exhibits the phenomenology of plastic amorphous systems. As the yield stress is approached from above, the strain rate vanishes and the avalanches size S and their duration tau diverge. We then show that in general, in materials where the energy functional depends on topology, the value x is proportional to the length L of a bond that vanishes in a plastic event. For this class of models P(x) is therefore readily measurable from geometry alone. Applying this approach to a quantification of the cell packing geometry in the developing wing epithelium of the fruit fly, we find that in this tissue P(L) exhibits a power law with exponents similar to those found numerically for a vertex model in its solid phase. This suggests that this tissue exhibits plasticity and non-linear material properties that emerge from collective cell behaviors and that these material properties govern developmental processes. Our approach based on the relation between topology and energetics suggests a new route to outstanding questions associated with the yielding transition.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Popović_2021_New_J._Phys._23_033004.pdf

Type

Publisher

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

2.44 MB

Format

Adobe PDF

Checksum (MD5)

4cadafa663a4e37ecf3ab6f57c89c84c

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés