Publication:

Correspondence functors and lattices

cris.lastimport.scopus

2025-07-11T02:40:19Z

cris.lastimport.wos

2025-06-02T09:54:13Z

cris.legacyId

258056

cris.virtual.parent-organization

MATHGEOM

cris.virtual.parent-organization

SB

cris.virtual.parent-organization

EPFL

cris.virtual.unitId

10861

cris.virtual.unitManager

Rizzo, Thomas

cris.virtualsource.parent-organization

8ffa9023-5ecb-4d49-9301-6ef30f4f3784

cris.virtualsource.parent-organization

8ffa9023-5ecb-4d49-9301-6ef30f4f3784

cris.virtualsource.parent-organization

8ffa9023-5ecb-4d49-9301-6ef30f4f3784

cris.virtualsource.parent-organization

8ffa9023-5ecb-4d49-9301-6ef30f4f3784

cris.virtualsource.unitId

8ffa9023-5ecb-4d49-9301-6ef30f4f3784

cris.virtualsource.unitManager

8ffa9023-5ecb-4d49-9301-6ef30f4f3784

datacite.rights

openaccess

dc.contributor.author

Bouc, Serge

dc.contributor.author

Thévenaz, Jacques

dc.date.accessioned

2018-11-01T16:57:40

dc.date.available

2018-11-01T16:57:40

dc.date.created

2018-11-01

dc.date.issued

2019

dc.date.modified

2024-10-17T23:22:48.357056Z

dc.description.abstract

A correspondence functor is a functor from the category of finite sets and correspondences to the category of k-modules, where k is a commutative ring. A main tool for this study is the construction of a correspondence functor associated to any finite lattice T. We prove for instance that this functor is projective if and only if the lattice T is distributive. Moreover, it has quotients which play a crucial role in the analysis of simple functors. The special case of total orders yields some more specific and complete results.

dc.description.sponsorship

CTG

dc.identifier.doi

10.1016/j.jalgebra.2018.10.019

dc.identifier.uri

https://infoscience.epfl.ch/handle/20.500.14299/149617

dc.relation

https://infoscience.epfl.ch/record/258056/files/Correspondences and lattices.pdf

dc.relation.journal

Journal of Algebra

dc.subject

finite set

dc.subject

correspondence

dc.subject

functor category

dc.subject

simple functor

dc.subject

poset

dc.subject

lattice

dc.title

Correspondence functors and lattices

dc.type

text::journal::journal article::research article

dspace.entity.type

Publication

dspace.file.type

Preprint

dspace.legacy.oai-identifier

oai:infoscience.epfl.ch:258056

epfl.curator.email

pierre.devaud@epfl.ch

epfl.lastmodified.email

julien.junod@epfl.ch

epfl.legacy.itemtype

Journal Articles

epfl.legacy.submissionform

ARTICLE

epfl.oai.currentset

SB

epfl.oai.currentset

OpenAIREv4

epfl.oai.currentset

article

epfl.peerreviewed

REVIEWED

epfl.publication.version

http://purl.org/coar/version/c_970fb48d4fbd8a85

epfl.writtenAt

EPFL

oaire.citation.endPage

518

oaire.citation.startPage

453

oaire.citation.volume

518

oaire.version

http://purl.org/coar/version/c_71e4c1898caa6e32

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Correspondences and lattices.pdf
Size:
500.7 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description:

Collections