Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A Variable Stiffness Magnetic Catheter Made of a Conductive Phase-Change Polymer for Minimally Invasive Surgery
 
research article

A Variable Stiffness Magnetic Catheter Made of a Conductive Phase-Change Polymer for Minimally Invasive Surgery

Piskarev, Yegor  
•
Shintake, Jun
•
Chautems, Christophe
Show more
February 6, 2022
Advanced Functional Materials

Variable stiffness (VS) is an important feature that significantly enhances the dexterity of magnetic catheters used in minimally invasive surgeries. Existing magnetic catheters with VS consist of sensors, heaters, and tubular structures filled with low melting point alloys, which have a large stiffness change ratio but are toxic to humans. In this paper, a VS magnetic catheter is described for minimally invasive surgery; the catheter is based on a novel variable stiffness thread (VST), which is made of a conductive shape memory polymer (CSMP). The CSMP is nontoxic and simultaneously serves as a heater, a temperature sensor, and a VS substrate. The VST is made through a new scalable fabrication process, which consists of a dipping technique that enables the fabrication of threads with the desired electrical resistance and thickness (with a step size of 70 µm). Selective bending of a multisegmented VST catheter with a diameter of 2.0 mm under an external magnetic field of 20 mT is demonstrated. Compared to existing proof-of-concept VS catheters for cardiac ablation, each integrated VST segment has the lowest wall thickness of 0.75 mm and an outer diameter of 2.0 mm. The segment bends up to 51° and exhibits a stiffness change factor of 21.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Adv Funct Materials - 2022 - Piskarev - A Variable Stiffness Magnetic Catheter Made of a Conductive Phase‐Change Polymer.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY-NC-ND

Size

4.25 MB

Format

Adobe PDF

Checksum (MD5)

5f4fee39e3619730f0e06eb47a64fae6

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés