Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Robust H-infinity Controller Design Using Frequency-Domain Data via Convex Optimization
 
research article

Robust H-infinity Controller Design Using Frequency-Domain Data via Convex Optimization

Karimi, Alireza  
•
Nicoletti, Achille  
•
Zhu, Yuanming  
2018
International Journal of Robust and Nonlinear Control

A new robust controller design method that satisfies the H-infinity criterion is developed for linear time-invariant single-input single-output (SISO) systems. A data-driven approach is implemented in order to avoid the unmodeled dynamics associated with parametric models. This data-driven method uses fixed order controllers to satisfy the H-infinity criterion in the frequency domain. The necessary and sufficient conditions for the existence of such controllers are presented by a set of convex constraints. These conditions are also extended to systems with frequency-domain uncertainties in polytopic form. It is shown that the upper bound on the weighted infinity norm of the sensitivity function converges monotonically to the optimal value, when the controller order increases. Additionally, the practical issues involved in computing fixed-order rational H infinity controllers in discrete- or continuous-time by convex optimization techniques are addressed.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Achille_Revision.pdf

Access type

openaccess

Size

1.11 MB

Format

Adobe PDF

Checksum (MD5)

63ca81403074d730af1af578668730b7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés