Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Robot Trotting with Segmented Legs in Simulation and Hardware.
 
conference paper

Robot Trotting with Segmented Legs in Simulation and Hardware.

Spröwitz, Alexander  
•
Tuleu, Alexandre  
•
Vespignani, Massimo  
Show more
2012
Proceedings of the 7th Annual Dynamic Walking Conference
Dynamic Walking 2012

This research is focusing on the implementation, testing, and analysis of quadrupedal, bio-inspired robot locomotion. Our tool of research is a light-weight, quadruped robot of the size of a house cat, both in simulation and hardware. We are currently following the idea of testing bio-inspired blue-prints such as leg-segmentation, directional leg compliance (bio-mechanical), and central pattern generators (bioinspired neuro-control) for their feasibility, and advantages against more traditional, engineered solutions. Clearly, our first goal would be to reach a same level of performance as animals, e.g. in terms of speed, cost of transport, or versatility. Much research has been done on bio-mechanical and neuro-physiological research on legged vertebrates. Hence, data is available for animal locomotion such as gait patterns, speed, cost of transport, duty factor, joint angles, torque patterns, body angles, and ground reaction force (GRF) data. While this data allows one to study a subset of locomotion characteristics, it often lacks an intuitive way to compare animals of different species, or as for us, quadruped robots. We started applying the collision angle analysis (Lee, Bertram, et al. 2011) for trot gait, based on qualitative and quantitative results from goats and dogs (taken from (ibid.)), and experimental recordings of our robot’s center of mass (COM) and GRF.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Sproewitz.pdf

Access type

openaccess

Size

526.69 KB

Format

Adobe PDF

Checksum (MD5)

7d6929ebc1f088a989b5f667646c8103

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés