Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. PLP: Page Latch-free Shared-everything OLTP
 
conference paper

PLP: Page Latch-free Shared-everything OLTP

Pandis, Ippokratis
•
Tözün, Pinar  
•
Johnson, Frederick Ryan
Show more
2011
Proceedings of the VLDB Endowment
37th International Conference on Very Large Data Bases

Scaling the performance of shared-everything on-line transaction processing to highly-parallel multicore hardware remains a great challenge for database system designers. Developments in OLTP technology remove locking and logging from being scalability bottlenecks on such systems, leaving page latching as the next potential problem. To tackle the page latching problem, we design a system around physiological partitioning (PLP). The PLP design applies logical-only partitioning, maintaining the desired properties of shared-everything designs, and introduces a multi-rooted B+Tree index structure (MRBTree) which allows us to partition the accesses at the physical page level. That is, logical partitioning, along with MRBTrees ensure that all accesses to a given index page come from a single thread and, hence, can be entirely latch-free. We extend the design to make heap page accesses thread-private as well. The elimination of page latching allows us to simplify key code paths in the system such as B+Tree operations leading to more efficient yet easier maintainable code. The profiling of a prototype PLP system shows that it acquires 85% and 68% fewer contentious critical sections per transaction than an optimized conventional design and one based on logical-only partitioning respectively. As a result the PLP prototype improves performance by up to 40% and 18% over the two systems on two multicore machines.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

paper184-pandis.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

824.43 KB

Format

Adobe PDF

Checksum (MD5)

09e91929a011448b0b23096f65a6c3ff

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés