Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Development of an electroless post-processing technique for depositing gold as electrode material on CMOS devices
 
research article

Development of an electroless post-processing technique for depositing gold as electrode material on CMOS devices

Berdondini, L.
•
van der Wal, P. D.  
•
de Rooij, N. F.  
Show more
2004
Sensors and Actuators

The limited electrode density and thus, the limited spatial resolution of substrate-integrated microelectrodes arrays (MEAs) used in in-vitro electrophysiology are currently considered as the main constraints of this technique. By taking advantage of the commercially available complementary metal oxide semiconductor (CMOS) standard technology, high density miroelectrode arrays on large active areas could be realized. However, the aluminum alloy used in CMOS as the metallic layer shows poor electrochemical stability in physiological media as well as a poor biocompatibility. A post-processing technique is therefore necessary for depositing a suitable electrode material. The methodology developed in this work relies on a gold electroless deposition technique using commercially available gold cyanide plating solutions. The main advantage of the electroless process is that it needs neither a photolithographic step nor the application of a reduction potential. The electroless process was developed in two stages, to begin with on aluminum-MEAs test structures and then the optimized process was transposed to the CMOS devices. The gold layers were characterized by ESEM, cyclic voltammetry and XPS. © 2003 Elsevier B.V. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.snb.2003.12.078
Author(s)
Berdondini, L.
van der Wal, P. D.  
de Rooij, N. F.  
Koudelka-Hep, M.
Date Issued

2004

Published in
Sensors and Actuators
Volume

99

Start page

505

End page

510

Note

315

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
SAMLAB  
Available on Infoscience
May 12, 2009
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/39015
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés