Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Impact of Random Geometric Distortions on the Performance and Reliability of an SOFC
 
research article

Impact of Random Geometric Distortions on the Performance and Reliability of an SOFC

Cornu, Thierry Mikaël
•
Wuillemin, Zacharie  
2011
Fuel Cells -Weinheim-

A method based on Monte Carlo simulations (MCS) is developed to assess the impact of manufacturing tolerances on the performance and reliability of solid oxide fuel cells (SOFCs). Computational fluid dynamics (CFD) simulations of the anode gas diffusion layer (GDL) are carried out for a set of deformed geometries. An automated code allows generating standardised deformations in a random manner on the original meshed geometry taken as input. In the scope of this study, the fuel flow uniformity is taken as the indicator of the performance and reliability of SOFCs. Statistical sensitivity analyses are carried out to assess the impact of dimensional tolerances on both repeat elements individually and a whole stack. The implemented method is evaluated with two standard GDL configurations. Results show that the sensitivity to thickness variations is predominant on the sensitivity to in-plane deformations of channels. Besides, the magnitude of sensitivity largely depends on the GDL configuration and on the extent of the deformation, too. In addition, negative effects of deformations are shown to be exacerbated in stack configuration. The method proved successful to quite quickly get insights on the quality of GDL configurations with respect to dimensional tolerances.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Cornu_2011_Fuel_Cells_1.pdf

Type

Publisher's Version

Version

Published version

Access type

restricted

Size

16.2 MB

Format

Adobe PDF

Checksum (MD5)

3e6c2c6ebdf4f7ea027fde8668c7dbf0

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés