Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. TOUGHENING BY CRACK BRIDGING IN HETEROGENEOUS CERAMICS
 
Loading...
Thumbnail Image
research article

TOUGHENING BY CRACK BRIDGING IN HETEROGENEOUS CERAMICS

Curtin, W. A.  
1995
Journal of the American Ceramic Society

The toughening of a ceramic by crack bridging is considered, including the heterogeneity caused simply by spatial randomness in the bridge locations, The growth of a single planar crack is investigated numerically by representing the microstructure as an array of discrete springs with heterogeneity in the mechanical properties of each spring, The stresses on each microstructural element are determined, for arbitrary configurations of spring properties and heterogeneity, using a lattice Green function technique. For toughening by (heterogeneous) crack bridging for both elastic and Dugdale bridging mechanisms, the following key physical results are found: (i) growing cracks avoid regions which are efficiently bridged, and do not propagate as selfsimilar penny cracks; (ii) crack growth thus proceeds at lower applied stresses in a heterogeneous material than in an ordered material; (iii) very little toughening is evident for moderate amounts of crack growth in many cases; and (iv) a different R-curve is found for every particular spatial distribution of bridging elements. These results show that material reliability is determined by both the flaw distribution and the ''toughness'' distribution, or local environment, around each flaw. These results also demonstrate that the ''microstructural'' parameters derived from fitting an R-curve to a continuum model may not have an immediate relationship to the actual microstructure; the parameters are ''effective'' parameters that absorb the effects of the heterogeneity. The conceptual issues illuminated by these conclusions must be fully understood and appreciated to further develop microstructure-property relationships in ceramic materials.

  • Details
  • Metrics
Type
research article
DOI
10.1111/j.1151-2916.1995.tb08488.x
Author(s)
Curtin, W. A.  
Date Issued

1995

Published in
Journal of the American Ceramic Society
Volume

78

Start page

1313

End page

1323

Subjects

al2o3

•

breakdown

•

brittle solids

•

fracture-resistance mechanism

•

fuse

•

matrix composites

•

model

•

network

•

particles

•

toughness

•

transformation

Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LAMMM  
Available on Infoscience
November 7, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/108407
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés