Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Adaptive Learning-Based Compressive Sampling for Low-power Wireless Implants
 
conference paper

Adaptive Learning-Based Compressive Sampling for Low-power Wireless Implants

Aprile, Cosimo
•
Ture, Kerim
•
Baldassarre, Luca
Show more
2018
IEEE Transactions on Circuits and Systems I-Regular Papers
1st International Symposium on Integrated Circuits and Systems (ISICAS)

Implantable systems are nowadays being used to interface the human brain with external devices, in order to understand and potentially treat neurological disorders. The most predominant design constraints are the system’s area and power. In this paper, we implement and combine advanced compressive sampling algorithms to reduce the power requirements of wireless telemetry. Moreover, we apply variable compression, to dynamically modify the device performance, based on the actual signal need. This paper presents an area-efficient adaptive system for wireless implantable devices, which dynamically reduces the power requirements yielding compression rates from 8× to 64×, with a high reconstruction performance, as qualitatively demonstrated on a human data set. Two different versions of the encoder have been designed and tested, one with and the second without the adaptive compression, requiring an area of 230×235 μm and 200 × 190 μm, respectively, while consuming only 0.47 μW at 0.8 V. The system is powered by a 4-coil inductive link with measured power transmission efficiency of 36%, while the distance between the external and internal coils is 10 mm. Wireless data communication is established by an OOK modulated narrowband and an IR-UWB transmitter, while consuming 124.2 pJ/bit and 45.2 pJ/pulse, respectively.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

08421754-rydwd5.pdf

Type

Main Document

Version

Published version

Access type

restricted

License Condition

N/A

Size

4.7 MB

Format

Adobe PDF

Checksum (MD5)

0ef8f290c9d0a96b3d005163ede82de3

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés