Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Implications of river intrusion and convective mixing on the spatial and temporal variability of under-ice CO2
 
research article

Implications of river intrusion and convective mixing on the spatial and temporal variability of under-ice CO2

Tofield-Pasche, Natacha  
•
Hofmann, Hilmar
•
Bouffard, Damien  
Show more
2019
Inland Waters

Ice-covered periods might significantly contribute to lake emissions at ice-melt, yet a comprehensive understanding of under-ice carbon dioxide (CO2) dynamics is still lacking. This study investigated the processes driving spatiotemporal patterns of under-ice CO2 in large Lake Onego. In March 2015 and 2016, under-ice CO2, dissolved inorganic carbon (DIC), and dissolved organic carbon (DOC) distributions were measured along a river to an open-lake transect. CO2 decreased from 120/129 μmol L−1 in the river to 51/98 μmol L−1 in the bay, and 34/36 μmol L−1 in the open lake, while DOC decreased from 1.18/1.55 mmol L−1 in the river to 0.67/1.04 mmol L−1 in the bay in 2015 and 2016, respectively. These decreases in concentrations with increasing distance from the river mouth indicate that river discharge modulates spatial patterns of underice CO2. The variability between the 2 years was mainly driven by river discharge and ice transparency affecting the extent of under-ice convection. Higher discharge during winter 2016 resulted in higher CO2 concentrations in the bay. By contrast, intensive under-ice convection led to lower, more homogeneously distributed CO2 in 2015. In conclusion, the river-to-bay transition zone is characterized by strong CO2 variability and is therefore an important zone to consider when assessing the CO2 budget of large lakes.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Pasche_4_Onega_variability under_ice_CO2_2019.pdf

Access type

openaccess

Size

3.95 MB

Format

Adobe PDF

Checksum (MD5)

12558d3c125d5c203a04cca95f5f6f30

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés