Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading
 
research article

Influence of the meso-structure in dynamic fracture simulation of concrete under tensile loading

Snozzi, L.  
•
Caballero, A.
•
Molinari, J. F.  
2011
Cement and Concrete Research

We investigate the dynamic behavior of concrete in relation to its composition within a computational framework (FEM). Concrete is modeled using a meso-mechanical approach in which aggregates and mortar are represented explicitly. Both continuum phases are considered to behave elastically, while nucleation, coalescence and propagation of cracks are modeled using the cohesive-element approach. In order to understand the loading-rate sensitivity of concrete, we simulate direct tensile-tests for strain rates ranging 1–1000 s−1. We investigate the influence of aggregate properties (internal ordering, size distribution and toughness) on peak strength and dissipated fracture energy. We show that a rate independent constitutive law captures the general increase of peak strength with strain rate. However, a phenomenological rate-dependent cohesive law is needed to obtain a better agreement with experiments. Furthermore, at low rates, peak strength is sensitive to the inclusions' toughness, while the matrix dominates the mechanical behavior at high rates.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

science-1.pdf

Access type

openaccess

Size

2.51 MB

Format

Adobe PDF

Checksum (MD5)

9205a8a339fb47664ad840ccfca97a07

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés