Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Zodiacal emission
 
research article

Zodiacal emission

Ade, P. A. R.
•
Aghanim, N.
•
Armitage-Caplan, C.
Show more
2014
Astronomy & Astrophysics

The Planck satellite provides a set of all-sky maps at nine frequencies from 30 GHz to 857 GHz. Planets, minor bodies, and di ff use interplanetary dust emission (IPD) are all observed. The IPD can be separated from Galactic and other emissions because Planck views a given point on the celestial sphere multiple times, through di ff erent columns of IPD. We use the Planck data to investigate the behaviour of zodiacal emission over the whole sky at sub-millimetre and millimetre wavelengths. We fit the Planck data to find the emissivities of the various components of the COBE zodiacal model -a di ff use cloud, three asteroidal dust bands, a circumsolar ring, and an Earth-trailing feature. The emissivity of the diffuse cloud decreases with increasing wavelength, as expected from earlier analyses. The emissivities of the dust bands, however, decrease less rapidly, indicating that the properties of the grains in the bands are di ff erent from those in the di ff use cloud. We fit the small amount of Galactic emission seen through the telescope's far sidelobes, and place limits on possible contamination of the cosmic microwave background (CMB) results from both zodiacal and far-sidelobe emission. When necessary, the results are used in the Planck pipeline to make maps with zodiacal emission and far sidelobes removed. We show that the zodiacal correction to the CMB maps is small compared to the Planck CMB temperature power spectrum and give a list of flux densities for small solar system bodies.

  • Details
  • Metrics
Type
research article
DOI
10.1051/0004-6361/201321562
Web of Science ID

WOS:000345282600020

Author(s)
Ade, P. A. R.
Aghanim, N.
Armitage-Caplan, C.
Arnaud, M.
Ashdown, M.
Atrio-Barandela, F.
Aumont, J.
Baccigalupi, C.
Banday, A. J.
Barreiro, R. B.
Show more
Corporate authors
Planck Collaboration
Date Issued

2014

Publisher

Edp Sciences S A

Published in
Astronomy & Astrophysics
Volume

571

Start page

A14

Subjects

zodiacal dust

•

interplanetary medium

•

cosmic background radiation

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LPPC  
Available on Infoscience
February 20, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/111595
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés