Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Substructured Two-grid and Multi-grid Domain Decomposition Methods
 
research article

Substructured Two-grid and Multi-grid Domain Decomposition Methods

Ciaramella, Gabriele
•
Vanzan, Tommaso  
March 13, 2022
Numerical Algorithms

Two-level domain decomposition methods are very powerful techniques for the efficient numerical solution of partial differential equations (PDEs). A two-level domain decomposition method requires two main components: a one-level preconditioner (or its corresponding smoothing iterative method), which is based on domain decomposition techniques, and a coarse correction step, which relies on a coarse space. The coarse space must properly represent the error components that the chosen one-level method is not capable to deal with. In the literature most of the works introduced efficient coarse spaces obtained as the span of functions defined on the entire space domain of the considered PDE. Therefore, the corresponding two-level preconditioners and iterative methods are defined in volume. In this paper, we use the excellent smoothing properties of domain decomposition methods to define a new class of substructured two-level methods, for which both domain decomposition smoothers and coarse correction steps are defined on the interfaces. This approach has several advantages. On the one hand, the required computational effort is cheaper than the one required by classical volumetric two-level methods. On the other hand, our approach does not require the explicit construction of coarse spaces, and it permits a multilevel extension, which is desirable when the high dimension of the problem or the scarce quality of the coarse space prevents the efficient numerical solution. Numerical experiments demonstrate the effectiveness of the proposed new numerical framework.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

G2S.pdf

Type

Preprint

Version

Submitted version (Preprint)

Access type

openaccess

License Condition

CC BY

Size

735.37 KB

Format

Adobe PDF

Checksum (MD5)

8f442505010a2843ef1b011ff93b6f2d

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés