Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Density profile peaking in JET H-mode plasmas: experiments versus linear gyrokinetic predictions
 
research article

Density profile peaking in JET H-mode plasmas: experiments versus linear gyrokinetic predictions

Maslov, Mikhail  
•
Angioni, Clemente  
•
Weisen, Henri  
2009
Nuclear Fusion

As an independent complement to previous studies (Weisen et al 2005 Nucl. Fusion 45 L1-4, Weisen et al 2006 Plasma Phys. Control. Fusion 48 A457-66, Angioni et al 2007 Nucl. Fusion 47 1326-35), density peaking in the JET tokamak was investigated on the dataset, comprising virtually all H-mode experiments performed in 2006-2007. Unlike previous studies, this work focuses on low collisionality data as most representative of reactor conditions. The study confirms that collisionality is the most important parameter governing density peaking in H-mode, followed by the NBI particle flux and/or the T-i/T-e temperature ratio. For the first time in JET a modest, albeit significant dependence of peaking on internal inductance, or magnetic shear is seen. The experimental behaviour is compared with an extensive database of linear gyrokinetic calculations using the GS2 code. The predictions from GS2 simulations based on the highest linear growth rate mode are in good agreement with experimental observations. They are also corroborated by initial results from the non-linear code GYRO.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

0029-5515_49_7_075037.pdf

Access type

openaccess

Size

631.82 KB

Format

Adobe PDF

Checksum (MD5)

fd62fe04bc0f6f180bbbf2440e64b332

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés