Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Photocatalysis/catalysis by innovative TiN and TiN-Ag surfaces inactivate bacteria under visible light
 
research article

Photocatalysis/catalysis by innovative TiN and TiN-Ag surfaces inactivate bacteria under visible light

Rtimi, Sami  
•
Baghriche, Oualid
•
Sanjines, Rosendo
Show more
2012
Applied Catalysis B: Environmental

This study presents the design, preparation, testing and characterization of TiN and TiN-Ag nanoparticulate films leading to photocatalytic and catalytic inactivation of Escherichia coli. When Ti was sputtered in N2 atmosphere, the TiN films unexpectedly revealed semiconductor properties when irradiated under visible light due to the formation of TiO2 showing absorption in the visible spectral region. In TiN-Ag films, Ag enhances the photocatalytic activity of TiN leading to faster bacterial inactivation. Evidence for the presence of TiO2 and TiN in the films is presented by XPS. The TiN layers 50 nm thick sputtered by DC for 3 min led to complete inactivation of E. coli within 120 min. But TiN layers with a thickness >50 nm hinder the surface diffusion of charges reducing bacterial inactivation. The rate of TiN deposition was ∼1.4 ×1015 atoms TiN/cm2s. For the TiN-polyester samples under visible light a 3 log10 bacterial reduction (99.9%) was observed within 30 min while for TiN-Ag samples the same bacterial reduction was attained within ∼15 min. The absorption of the TiN-Ag samples in Kubelka–Munk (KM) units was directly proportional to the E. coli inactivation kinetics. TiN-Ag plasmon nanostructures are concurrently formed under low intensity visible light and accelerated bacterial inactivation. This study shows that TiN films have the potential to replace Ag-based disinfection materials leaching Ag into the environment.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

TiN-Ag.pdf

Access type

openaccess

Size

1.95 MB

Format

Adobe PDF

Checksum (MD5)

71c72864088000aae924747f2ef649f7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés