Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Sustainability assessment of succinic acid production technologies from biomass using metabolic engineering
 
research article

Sustainability assessment of succinic acid production technologies from biomass using metabolic engineering

Morales, Merten
•
Ataman, Meric  
•
Badr, Sara
Show more
2016
Energy & Environmental Science

Over the past few years, bio-succinic acid from renewable resources has gained increasing attention as a potential bio-derived platform chemical for the detergent/surfactant, ion chelator, food and pharmaceutical markets. Until now, much research was undertaken to lower the production costs of bio-succinic acid, however a multicriteria sustainability evaluation of established and upcoming production processes from a technical perspective is still lacking in the scientific literature. In this study, we combine metabolic engineering with the most mature technologies for the production of bio-succinic acid from sugar beet and lignocellulosic residues. Downstream technologies such as reactive extraction, electrodialysis and ion exchange are investigated together with different upstream technologies such as neutral pH level-, acidic- and high sugar fermentation including metabolically engineered E. coli strains. Different biorefinery concepts are evaluated considering technical, economic, environmental and process hazard aspects in order to gain a broad sustainability perspective of the technologies. The results reveal that energy integration is a key factor for biorefinery concepts in order to be economically reasonable and to achieve lower environmental impacts compared to the conventional production from non-renewable resources. It was found that metabolically engineered E. coli with resistance at the acidic pH level in the fermentation together with reactive extraction in the purification presents the most environmentally competitive technology. However, E. coli strains with resistance at high sugar concentrations together with reactive extraction are revealed to present the most economically competitive technology for the production of bio-succinic acid. Moreover, both technologies are flagged for higher process hazards and require the right measures to enhance process safety and mitigate environmental loads and worker exposure.

  • Details
  • Metrics
Type
research article
DOI
10.1039/c6ee00634e
Web of Science ID

WOS:000382746300007

Author(s)
Morales, Merten
Ataman, Meric  
Badr, Sara
Linster, Sven
Kourlimpinis, Ioannis
Papadokonstantakis, Stavros
Hatzimanikatis, Vassily  
Hungerbuhler, Konrad
Date Issued

2016

Publisher

Royal Soc Chemistry

Published in
Energy & Environmental Science
Volume

9

Issue

9

Start page

2794

End page

2805

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
LCSB  
Available on Infoscience
October 18, 2016
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/130053
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés