Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. KRAB zinc finger proteins link heterochromatin maintenance to replicative stress and inflammation in diffuse large B-cell lymphoma
 
doctoral thesis

KRAB zinc finger proteins link heterochromatin maintenance to replicative stress and inflammation in diffuse large B-cell lymphoma

Brandão Sanches Vong Martins, Filipe Amândio  
2023

Genomic instability enhances cancer progression by favoring clonal diversity, yet uncontrolled replicative stress can lead to mitotic catastrophe and inflammatory responses promoting immune rejection. KRAB-containing zinc finger proteins (KZFPs) are epigenetic modulators, which for many control heterochromatin at transposable element (TE)-embedded regulatory sequences. We identified a cluster of 18 KZFPs associated with poor prognosis in diffuse large B cell lymphoma (DLBCL). We found their upregulation to correlate with increased copy number alterations and suppression of immune responses in tumor samples. Upon depleting two that target evolutionarily recent TEs, the primate-specific ZNF587 and ZNF417 paralogs, the proliferation of DLBCL cell lines was drastically impaired and replicative stress abruptly induced with marked alterations of the chromatin landscape and multiplication of DNA replication origins. Furthermore, ZNF587/417 knockdown upregulated interferon/inflammatory-related genes through activation of the cGAS-STING DNA sensing pathway, augmented the susceptibility of tumor cells to macrophage-mediated phagocytosis and modified their immunogenicity through an increased surface expression of HLA-I and reshuffling of their immunopeptidome. ZNF587 and ZNF417 are thus pro-oncogenic factors allowing for higher degrees of genetic instability through attenuation of replicative stress and secondary inflammation, an influence that likely facilitates the clonal expansion, diversification, and immune evasion of cancer cells.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH10272.pdf

Type

N/a

Access type

openaccess

License Condition

copyright

Size

12.69 MB

Format

Adobe PDF

Checksum (MD5)

cfe68ec3639445cb5957807d6fa2b61a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés