Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Mechanisms of the breathing contribution to bodily self‐consciousness in healthy humans: Lessons from machine‐assisted breathing?
 
research article

Mechanisms of the breathing contribution to bodily self‐consciousness in healthy humans: Lessons from machine‐assisted breathing?

Betka, Sophie  
•
Canzoneri, Elisa  
•
Adler, Dan
Show more
March 12, 2020
Psychophysiology

Previous studies investigated bodily self‐consciousness (BSC) by experimentally exposing subjects to multisensory conflicts (i.e., visuo‐tactile, audio‐tactile, visuo‐cardiac) in virtual reality (VR) that involve the participant's torso in a paradigm known as the full‐body illusion (FBI). Using a modified FBI paradigm, we found that synchrony of visuo‐respiratory stimulation (i.e., a flashing outline surrounding an avatar in VR; the flash intensity depending on breathing), is also able to modulate BSC by increasing self‐location and breathing agency toward the virtual body. Our aim was to investigate such visuo‐respiratory effects and determine whether respiratory motor commands contributes to BSC, using non‐invasive mechanical ventilation (i.e., machine‐delivered breathing). Seventeen healthy participants took part in a visuo‐respiratory FBI paradigm and performed the FBI during two breathing conditions: (a) “active breathing” (i.e., participants actively initiate machine‐delivered breaths) and (b) “passive breathing” (i.e., breaths’ timing was determined by the machine). Respiration rate, tidal volume, and their variability were recorded. In line with previous results, participants experienced subjective changes in self‐location, breathing agency, and self‐identification toward the avatar's body, when presented with synchronous visuo‐respiratory stimulation. Moreover, drift in self‐location was reduced and tidal volume variability were increased by asynchronous visuo‐respiratory stimulations. Such effects were not modulated by breathing control manipulations. Our results extend previous FBI findings showing that visuo‐respiratory stimulation affects BSC, independently from breathing motor command initiation. Also, variability of respiratory parameters was influenced by visuo‐respiratory feedback and might reduce breathing discomfort. Further exploration of such findings might inform the development of respiratory therapeutic tools using VR in patients.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

psyp.13564.pdf

Access type

openaccess

License Condition

CC BY

Size

578.28 KB

Format

Adobe PDF

Checksum (MD5)

32357d1a60889c494d8db31b5dcf9f67

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés