Full-waveform GPR inversion to assess chloride gradients in concrete
The spreading of deicing salt on roads during winter and the consequent migration of chloride ions within concrete exposes structures reinforcement to corrosion. Reinforcement corrosion is problematic because it reduces the structure's load carrying capacity and a long-term consequence can be structural failure. The use of Ground Penetrating Radar (GPR) technology is commonly applied to reinforced concrete structural mapping. This paper provides methodologies for the calculation of the electromagnetic parameters from GPR data accounting for chloride content and its distribution within concrete. The previous work showed that they are linked with water and chloride content. A GPR dataset was carried out with bi-static off-ground GPR antennas during an experiment recreating chloride contamination processes in concrete specimens. Two novel solutions are presented in this paper, their use on the dataset returned the electromagnetic parameters of the concrete specimens with knowledge of their thickness. Firstly, a ray-based approach is provided as a fast computational tool to determine average material properties. Thereafter, a novel full-waveform inversion based on a multilayered forward model is presented. It allows the identification of conductivity gradients present inside the concrete. Finally, the results are compared with additional destructive testing; they present a good correspondence. (C) 2013 Elsevier Ltd. All rights reserved.
WOS:000319848500010
2013
57
74
84
REVIEWED