Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Sampling and Reconstruction of Signals with Finite Rate of Innovation in the Presence of Noise
 
research article

Sampling and Reconstruction of Signals with Finite Rate of Innovation in the Presence of Noise

Maravic, Irena  
•
Vetterli, Martin  
2005
IEEE Transactions on Signal Processing

Recently, it was shown that it is possible to develop exact sampling schemes for a large class of parametric nonban- dlimited signals, namely certain signals of finite rate of innovation. A common feature of such signals is that they have a finite number of degrees of freedom per unit of time and can be reconstructed from a finite number of uniform samples. In order to prove sam- pling theorems, Vetterli et al. considered the case of deterministic, noiseless signals and developed algebraic methods that lead to per- fect reconstruction. However, when noise is present, many of those schemes can become ill-conditioned. In this paper, we revisit the problem of sampling and reconstruction of signals with finite rate of innovation and propose improved, more robust methods that have better numerical conditioning in the presence of noise and yield more accurate reconstruction. We analyze, in detail, a signal made up of a stream of Diracs and develop algorithmic tools that will be used as a basis in all constructions. While some of the tech- niques have been already encountered in the spectral estimation framework, we further explore preconditioning methods that lead to improved resolution performance in the case when the signal contains closely spaced components. For classes of periodic signals, such as piecewise polynomials and nonuniform splines, we propose novel algebraic approaches that solve the sampling problem in the Laplace domain, after appropriate windowing. Building on the re- sults for periodic signals, we extend our analysis to finite-length sig- nals and develop schemes based on a Gaussian kernel, which avoid the problem of ill-conditioning by proper weighting of the data ma- trix. Our methods use structured linear systems and robust algo- rithmic solutions, which we show through simulation results.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

MaravicV05.pdf

Access type

openaccess

Size

895.13 KB

Format

Adobe PDF

Checksum (MD5)

5f39659963b0c5f08d9921831a77bf76

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés