Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Combining physics-based and data-driven models: advancing the frontiers of research with scientific machine learning
 
research article

Combining physics-based and data-driven models: advancing the frontiers of research with scientific machine learning

Quarteroni, Alfio  
•
Gervasio, Paola
•
Regazzoni, Francesco
2025
Mathematical Models and Methods in Applied Sciences

Scientific Machine Learning (SciML) is a recently emerged research field which combines physics-based and data-driven models for the numerical approximation of differential problems. Physics-based models rely on the physical understanding of the problem at hand, subsequent mathematical formulation, and numerical approximation. Data-driven models instead aim to extract relations between input and output data without arguing any causality principle underlining the available data distribution. In recent years, data-driven models have been rapidly developed and popularised. Such a diffusion has been triggered by a huge availability of data (the so-called big data), an increasingly cheap computing power, and the development of powerful Machine Learning (ML) algorithms. SciML leverages the physical awareness of physics-based models and, at the same time, the efficiency of data-driven algorithms. With SciML, we can inject physics and mathematical knowledge into ML algorithms. Yet, we can rely on data-driven algorithms’ capability to discover complex and nonlinear patterns from data and improve the descriptive capacity of physics-based models. After recalling the mathematical foundations of digital modelling and ML algorithms, and presenting the most popular ML architectures, we discuss the great potential of a broad variety of SciML strategies in solving complex problems governed by Partial Differential Equations (PDEs). Finally, we illustrate the successful application of SciML to the simulation of the human cardiac function, a field of significant socio-economic importance that poses numerous challenges on both the mathematical and computational fronts. The corresponding mathematical model is a complex system of nonlinear ordinary and PDEs describing the electromechanics, valve dynamics, blood circulation, perfusion in the coronary tree, and torso potential. Despite the robustness and accuracy of physics-based models, certain aspects, such as unveiling constitutive laws for cardiac cells and myocardial material properties, as well as devising efficient reduced-order models to dominate the extraordinary computational complexity, have been successfully tackled by leveraging data-driven models.

  • Details
  • Metrics
Type
research article
DOI
10.1142/S0218202525500125
Scopus ID

2-s2.0-105001576647

Author(s)
Quarteroni, Alfio  

École Polytechnique Fédérale de Lausanne

Gervasio, Paola

Università degli Studi di Brescia

Regazzoni, Francesco

Politecnico di Milano

Date Issued

2025

Published in
Mathematical Models and Methods in Applied Sciences
Subjects

approximation of PDEs

•

artificial neural networks

•

machine learning

•

Scientific computing

•

scientific machine learning

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
PH-SB  
FunderFunding(s)Grant NumberGrant URL

Dipartimento di Eccellenza 2023-2027 (Dipartimento di Matematica, Politecnico di Milano)

Brin Mathematics Research Center of the University of Maryland at College Park

Laboratoire Jacques-Louis Lions of Sorbonne Universite at Paris

Show more
Available on Infoscience
April 11, 2025
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/249094
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés