Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Graph-based Transform Coding with Application to Image Compression
 
research article

Graph-based Transform Coding with Application to Image Compression

Fracastoro, Giulia
•
Thanou, Dorina  
•
Frossard, Pascal  
2019
IEEE Transactions on Image Processing

In this paper, we propose a new graph-based coding framework and illustrate its application to image compression. Our approach relies on the careful design of a graph that optimizes the overall rate-distortion performance through an effective graph-based transform. We introduce a novel graph estimation algorithm, which uncovers the connectivities between the graph signal values by taking into consideration the coding of both the signal and the graph topology in rate-distortion terms. In particular, we introduce a novel coding solution for the graph by treating the edge weights as another graph signal that lies on the dual graph. Then, the cost of the graph description is introduced in the optimization problem by minimizing the sparsity of the coefficients of its graph Fourier transform (GFT) on the dual graph. In this way, we obtain a convex optimization problem whose solution defines an efficient transform coding strategy. The proposed technique is a general framework that can be applied to different types of signals, and we show two possible application fields, namely natural image coding and piecewise smooth image coding. The experimental results show that the proposed method outperforms classical fixed transforms such as DCT, and, in the case of depth map coding, the obtained results are even comparable to the state-of-the-art graph-based coding method, that are specifically designed for depth map images.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1712.06393.pdf

Access type

openaccess

Size

1.36 MB

Format

Adobe PDF

Checksum (MD5)

dc5f8db5cbd155ea54467bff015385af

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés