Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Multiphysics model for assessing photoelectrochemical phenomena under concentrated irradiation
 
research article

Multiphysics model for assessing photoelectrochemical phenomena under concentrated irradiation

Bedoya Lora, Franky Esteban  
•
Holmes-Gentle, Isaac Thomas  
•
Haussener, Sophia  
2023
Electrochimica Acta

A multiphysics model was developed for a photoelectrochemical (PEC) cell at the device level to simulate water splitting operating under concentrated irradiation (between 50 to 600 kW m−2). The 2D model couples charge, heat, mass, photon, and momentum transfer to predict local current densities, potential distributions, temperature profiles, volumetric gas fractions, pressure, and velocities profiles in the electrolyte. Electrode kinetics and electrolyte resistance were considered for the electrochemical processes, and two-phase bubbly- flow under laminar conditions for momentum transfer. The effects of bubbles on the incident photon flux and the thermal and electrical conductivities of the electrolyte were also considered. Photocurrent densities were estimated using a semiempirical correlations dependent on potential, charge transfer efficiencies, and temperature. The model was applied to a custom-made cell utilising a spray pyrolysed Sn-doped Fe2O3 photoanode, a material with well-known photoelectrochemical behaviour and stability. Transparent conductive glass and titanium foil were investigated as two possible photoanode substrates. Predictions indicate that commercial conductive glasses are not suitable substrates due to a significant ohmic drop caused by high current densities. The model illustrates that thermal and bubble management are critical to improving the overall performance of a PEC cell subjected to high photon flux. Furthermore, the model can be used to decouple the phenomena that occur under such conditions and could assist in the study of photoelectrode materials under high irradiance.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S0013468623008812-main.pdf

Type

Publisher

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

1.74 MB

Format

Adobe PDF

Checksum (MD5)

ae2947197c05f007f2f92a102e951369

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés