Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. On the conjugate symmetry and sparsity of the harmonic decomposition of parametric surfaces with the randomised Kaczmarz method
 
research article

On the conjugate symmetry and sparsity of the harmonic decomposition of parametric surfaces with the randomised Kaczmarz method

Shaqfa, Mahmoud
•
dos Santos, Ketson R.M.
•
Beyer, Katrin  
July 1, 2024
Signal Processing

This limitation is circumvented by using scalable and non–memory–intensive harmonic expansions. In this paper, the projection of parametric surfaces onto disk and spherical harmonics bases is investigated, and three novel computationally efficient algorithms are proposed based on the randomised Kaczmarz (RK). To boost the computational performance and convergence of the root mean square error (RMSE) of the reconstructed surfaces we exploited the conjugate symmetry property of the harmonic basis functions. Further, the sparsity of the signals is used for estimating the projection coefficients from an undersampled surface. The first algorithm only takes into consideration the conjugate symmetry property for enhancing the convergence of the RMSE. The second algorithm endows the sparse version of the RK algorithm with the conjugate symmetry property. The third algorithm combines the previous two to further accelerate the convergence of the RMSE. The performance of the developed algorithms is tested on three surfaces where we demonstrate that they outperform conventional reconstruction techniques in terms of processing time with comparable precision.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1016_j.sigpro.2024.109462.pdf

Type

Main Document

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

License Condition

CC BY

Size

2.08 MB

Format

Adobe PDF

Checksum (MD5)

05e5856f7e6e6e896acc749565dde3c9

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés