Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Fully dynamic cycle-equivalence in graphs
 
conference paper

Fully dynamic cycle-equivalence in graphs

Henzinger, Monika R.  
1994
Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium on

Two edges e_1 and e_2 of an undirected graph are cycle-equivalent iff all cycles that contain e_1 also contain e_2, i.e., iff e_1 and e_2 are a cut-edge pair. The cycle-equivalence classes of the control-flow graph are used in optimizing compilers to speed up existing control-flow and data-flow algorithms. While the cycle-equivalence classes can be computed in linear time, we present the first fully dynamic algorithm for maintaining the cycle-equivalence relation. In an n-node graph our data structure executes an edge insertion or deletion in O(sqrt(n.log n)) time and answers the query whether two given edges are cycle-equivalent in O(pow2(log(n))) time. We also present an algorithm for plane graphs with O(log n) update and query time and for planar graphs with O(log n) insertion time and O(log2 n) query and deletion time. Additionally, we show a lower bound of Ω(log n/log log n) for the amortized time per operation for the dynamic cycle-equivalence problem in the cell probe model

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Henzinger94.pdf

Access type

openaccess

Size

1.19 MB

Format

Adobe PDF

Checksum (MD5)

73269b96a1428dcc49d7cf1bdc0fed16

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés