Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Stag Beetle Elytra: Localized Shape Retention and Puncture/Wear Resistance
 
research article

Stag Beetle Elytra: Localized Shape Retention and Puncture/Wear Resistance

Kundanati, Lakshminath
•
Guarino, Roberto  
•
Pugno, Nicola M.
December 1, 2019
Insects

Beetles are by far one of the most successful groups of insects, with large diversity in terms of number of species. A part of this success is attributed to their elytra, which provide various functions such as protection to their bodies from mechanical forces. In this study, stag beetle (Lucanus cervus) elytra were first examined for their overall flexural properties and were observed to have a localized shape-retaining snap-through mechanism, which may play a possible role in partly absorbing impact energy, e.g., during battles and falls from heights. The snap-through mechanism was validated using theoretical calculations and also finite element simulations. Elytra were also characterized to examine their puncture and wear resistance. Our results show that elytra have a puncture resistance that is much higher than that of mandible bites. The measured values of modulus and hardness of elytra exocuticle were 10.3 +/- 0.8 GPa and 0.7 +/- 0.1 GPa, respectively. Using the hardness-to-modulus ratio as an indicator of wear resistance, the estimated value was observed to be in the range of wear-resistant biological material such as blood worms (Glyrcera dibranchiata). Thus, our study demonstrates different mechanical properties of the stag beetle elytra, which can be explored to design shape-retaining bio-inspired composites with enhanced puncture and wear resistance.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

insects-10-00438.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

1.35 MB

Format

Adobe PDF

Checksum (MD5)

ea0bc3ec32ec213047bb0ebee6765c16

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés