Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Subject-specific modulation of local field potential spectral power during brain–machine interface control in primates
 
research article

Subject-specific modulation of local field potential spectral power during brain–machine interface control in primates

So, Kelvin
•
Dangi, Siddharth
•
Orsborn, Amy L.
Show more
2014
Journal of Neural Engineering

Objective. Intracortical brain–machine interfaces (BMIs) have predominantly utilized spike activity as the control signal. However, an increasing number of studies have shown the utility of local field potentials (LFPs) for decoding motor related signals. Currently, it is unclear how well different LFP frequencies can serve as features for continuous, closed-loop BMI control. Approach. We demonstrate 2D continuous LFP-based BMI control using closed-loop decoder adaptation, which adapts decoder parameters to subject-specific LFP feature modulations during BMI control. We trained two macaque monkeys to control a 2D cursor in a center-out task by modulating LFP power in the 0–150 Hz range. Main results. While both monkeys attained control, they used different strategies involving different frequency bands. One monkey primarily utilized the low-frequency spectrum (0–80 Hz), which was highly correlated between channels, and obtained proficient performance even with a single channel. In contrast, the other monkey relied more on higher frequencies (80–150 Hz), which were less correlated between channels, and had greater difficulty with control as the number of channels decreased. We then restricted the monkeys to use only various sub-ranges (0–40, 40–80, and 80–150 Hz) of the 0–150 Hz band. Interestingly, although both monkeys performed better with some sub-ranges than others, they were able to achieve BMI control with all sub-ranges after decoder adaptation, demonstrating broad flexibility in the frequencies that could potentially be used for LFP-based BMI control. Significance. Overall, our results demonstrate proficient, continuous BMI control using LFPs and provide insight into the subject-specific spectral patterns of LFP activity modulated during control.

  • Details
  • Metrics
Type
research article
DOI
10.1088/1741-2560/11/2/026002
Web of Science ID

WOS:000333419400007

Author(s)
So, Kelvin
Dangi, Siddharth
Orsborn, Amy L.
Gastpar, Michael C.  
Carmena, Jose M.
Date Issued

2014

Publisher

Institute of Physics

Published in
Journal of Neural Engineering
Volume

11

Issue

2

Article Number

026002

Subjects

brain–machine interfaces (BMI)

•

local field potential (LFP)

•

primate

Editorial or Peer reviewed

REVIEWED

Written at

OTHER

EPFL units
LINX  
Available on Infoscience
February 7, 2014
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/100463
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés