Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Unraveling metal effects on CO<sub>2</sub> uptake in pyrene-based metal-organic frameworks
 
research article

Unraveling metal effects on CO2 uptake in pyrene-based metal-organic frameworks

Domingues, Nency P.  
•
Pougin, Miriam J.  
•
Li, Yutao  
Show more
February 11, 2025
Nature Communications

Pyrene-based metal-organic frameworks (MOFs) have tremendous potential for various applications. With infinite structural possibilities, the MOF community often relies on simulations to identify the most promising candidates for given applications. Among thousands of reported structures, many exhibit limited reproducibility - in either synthesis, performance, or both - owing to the sensitivity of synthetic conditions. Geometric distortions that may arise in the functional groups of pyrene-based ligands during synthesis and/or activation cannot easily be predicted. This sometimes leads to discrepancies between in silico and experimental results. Here, we investigate a series of pyrene-based MOFs for carbon capture. These structures share the same ligand (1,3,6,8-tetrakis(p-benzoic acid)pyrene (TBAPy)) but have different metals (M-TBAPy, M = Al, Ga, In, and Sc). The ligands stack parallel in their orthorhombic crystal structure, creating a promising binding site for CO2. As predicted, the metal is shown to affect the pyrene stacking distance and, therefore, the CO2 uptake. Here, we investigate the metal's intrinsic effects on the MOFs' crystal structure. Crystallographic analysis shows the emergence of additional phases, which thus impacts the overall adsorption characteristics of the MOFs. Considering these additional phases improves the prediction of adsorption isotherms, enhancing our understanding of pyrene-based MOFs for carbon capture.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

10.1038_s41467-025-56296-w.pdf

Type

Main Document

Version

Published version

Access type

openaccess

License Condition

CC BY

Size

1.82 MB

Format

Adobe PDF

Checksum (MD5)

91f583fe68692c4a59884bc1ceef4661

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés