Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Modeling and control of TCV
 
research article

Modeling and control of TCV

Sharma, A. S.
•
Limebeer, D. J. N.
•
Jaimoukha, I. M.
Show more
2005
Ieee Transactions on Control Systems Technology

A new approach to the modeling and control of tokamak fusion reactors is presented. A nonlinear model is derived using the classical arguments of Hamiltonian mechanics and a low-order linear model is derived from it. The modeling process used here addresses flux and energy conservation issues explicitly and self-consistently. The model is of particular value, because it shows the relationship between the initial modeling assumptions and the resulting predictions. The mechanisms behind the creation of uncontrollable modes in tokamak models are discussed. A normalized coprime factorization H-infinity controller is developed for the the Tokamak A Configuration Variable (TCV), CRPP-EPFL, Lausanne, Switzerland, tokamak using the linearized model, which has been extensively verified on the TCV and JT-60U, JAERI, Naka, Japan, tokamaks. Recent theory is applied to reduce the controller order significantly whilst guaranteeing a priori bounds on the robust stability and performance. The controller is shown to track successfully reference signals that dictate the plasma's shape, position and current. The tests used to verify this were carried out on linear and nonlinear models.

  • Details
  • Metrics
Type
research article
DOI
10.1109/TCST.2004.841647
Web of Science ID

WOS:000228766700002

Author(s)
Sharma, A. S.
Limebeer, D. J. N.
Jaimoukha, I. M.
Lister, J. B.  
Date Issued

2005

Published in
Ieee Transactions on Control Systems Technology
Volume

13

Issue

3

Start page

356

End page

369

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
CRPP  
SPC  
Available on Infoscience
April 16, 2008
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/22147
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés