Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Correlation of the superconducting critical temperature with spin and orbital excitations in (CaxLa1− x)(Ba1. 75− xLa 0. 25) Cu3Oy as measured by resonant inelastic x-ray scattering
 
research article

Correlation of the superconducting critical temperature with spin and orbital excitations in (CaxLa1− x)(Ba1. 75− xLa 0. 25) Cu3Oy as measured by resonant inelastic x-ray scattering

Ellis, David Shai
•
Huang, Yao-Bo
•
Olalde-Velasco, Paul
Show more
2015
Physical Review B

Electronic spin and orbital (dd) excitation spectra of (CaxLa1−x )(Ba1.75−xLa0.25+x)Cu3Oy samples are measured by resonant inelastic x-ray scattering (RIXS). In this compound, Tc of samples with identical hole dopings is strongly affected by the Ca/Ba substitution x due to subtle variations in the lattice constants, while crystal symmetry and disorder as measured by linewidths are x independent. We examine two extreme values of x and two extreme values of hole-doping content y corresponding to antiferromagnetic and superconducting states. The x dependence of the spin-mode energies is approximately the same for both the antiferromagnetic and superconducting samples. This clearly demonstrates that RIXS is sensitive to the superexchange J even in doped samples. A positive correlation between J and the maximum of Tc at optimal doping (T max c) is observed. We also measured the x dependence of the dxy→dx2−y2 and dxz/yz→dx2−y2 orbital splittings. We infer that the effect of the unresolved d3z2−r2→dx2→y2 excitation on T max c is much smaller than the effect of J. There appears to be dispersion in the dxy→dx2−y2 peak of up to 0.05 eV. Our fitting furthermore indicates an asymmetric dispersion for the dxz/yz→dx2−y2 excitation. A peak at ∼0.8 eV is also observed and attributed to a dd excitation in the chain layer.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

PhysRevB.92.104507.pdf

Type

Publisher's Version

Version

http://purl.org/coar/version/c_970fb48d4fbd8a85

Access type

openaccess

Size

922.9 KB

Format

Adobe PDF

Checksum (MD5)

29aec8275738c70b1813d859fc81f941

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés