Kolkowski, RadoslawSzeszko, JustynaDwir, BenjaminKapon, EliZyss, Joseph2016-07-192016-07-192016-07-19201610.1002/lpor.201500212https://infoscience.epfl.ch/handle/20.500.14299/127468WOS:000372976700008Rectangular arrays of pyramidal recesses coated by silver film are investigated by means of polarization-resolved nonlinear microscopy at 900 nm fundamental wavelength, demonstrating strong dependence of the dipole-allowed SHG upon the lattice parameters. The plasmonic band gap causes nearly complete SHG suppression in arrays of 650 nm periodicity, whereas a sharp resonance at 550 nm periodicity is observed due to excitation of band edge Bloch states at fundamental frequency, accompanied by symmetry-constrained interactions with similar modes at the second-harmonic frequency. Additionally, coupling with modes at the bottom side of the silver film may lead to extraordinary optical transmission, opening a channel for SHG from the highly nonlinear GaAs substrate. Changing the lattice geometry enables SHG intensity modulation over three orders of magnitude, while the effective nonlinear anisotropy can be continuously switched between the two lattice directions, reaching values as high as +/- 0.96.surface plasmon polaritonsplasmonic band gapplasmonic Bloch modessecond harmonic generationsecond order susceptibilityNon-centrosymmetric plasmonic crystals for second-harmonic generation with controlled anisotropy and enhancementtext::journal::journal article::research article