Planck CollaborationAde, P. A. R.Aghanim, N.Armitage-Caplan, C.Arnaud, M.Ashdown, M.Atrio-Barandela, E.Aumont, J.Baccigalupi, C.Banday, A. J.Barreiro, R. B.Bartlett, J. G.Basak, S.Battaner, E.Benabed, K.Benoit, A.Benoit-Levy, A.Bernard, J. -P.Bersanelli, M.Bielewicz, P.Bobin, J.Bock, J. J.Bonaldi, A.Bonavera, L.Bond, J. R.Borrill, J.Bouchet, F. R.Bridges, M.Bucher, M.Burigana, C.Butler, R. C.Cardoso, J. -F.Catalano, A.Challinor, A.Chamballu, A.Chiang, H. C.Chiang, L. -YChristensen, P. R.Church, S.Clements, D. L.Colombi, S.Colombo, L. P. L.Couchot, F.Coulais, A.Crill, B. P.Curto, A.Cuttaia, F.Danese, L.Davies, R. D.Davis, R. J.De Bernardis, P.De Rosa, A.De Zotti, G.Dechelette, T.Delabrouille, J.Delouis, J. -M.Desert, F. -X.Dickinson, C.Diego, J. M.Dole, H.Donzelli, S.Dore, O.Douspis, M.Dunkley, J.Dupac, X.Efstathiou, G.Ensslin, T. A.Eriksen, H. K.Finelli, F.Forni, O.Frailis, M.Franceschi, E.Galeotta, S.Ganga, K.Giard, M.Giardino, G.Giraud-Heraud, Y.Gonzalez-Nuevo, J.Gorski, K. M.Gratton, S.Gregorio, A.Gruppuso, A.Gudmundsson, J. E.Hansen, F. K.Hanson, D.Harrison, D.Henrot-Versille, S.Hernandez-Monteagudo, C.Herranz, D.Hildebrandt, S. R.Hivon, E.Ho, S.Hobson, M.Holmes, W. A.Hornstrup, A.Hovest, W.Huffenberger, K. M.Jaffe, A. H.Jaffe, T. R.Jones, W. C.Juvela, M.Keihanen, E.Keskitalo, R.Kisner, T. S.Kneissl, R.Knoche, J.Knox, L.Kunz, M.Kurki-Suonio, H.Lagache, G.Lahteenmaki, A.Lamarre, J. -M.Lasenby, A.Laureijs, R. J.Lavabre, A.Lawrence, C. R.Leahy, J. P.Leonardi, R.Leon-Tavares, J.Lesgourgues, J.Lewis, A.Liguori, M.Lilje, P. B.Linden-Vornle, M.Lopez-Caniego, M.Lubin, P. M.Macias-Perez, J. F.Maffei, B.Maino, D.Mandolesi, N.Mangilli, A.Maris, M.Marshall, D. J.Martin, P. G.Martinez-Gonzalez, E.Masi, S.Massardi, M.Matarrese, S.Matthai, F.Mazzotta, P.Melchiorri, A.Mendes, L.Mennella, A.Migliaccio, M.Mitra, S.Miville-Deschenes, M. -A.Moneti, A.Montier, L.Morgante, G.Mortlock, D.Moss, A.Munshi, D.Murphy, J. A.Naselsky, P.Nati, F.Natoli, P.Netterfield, C. B.Norgaard-Nielsen, H. U.Noviello, F.Novikov, D.Novikov, I.Osborne, S.Oxborrow, C. A.Paci, F.Pagano, L.Pajot, F.Paoletti, D.Partridge, B.Pasian, F.Patanchon, G.Perdereau, O.Perotto, L.Perrotta, F.Piacentini, F.Piat, M.Pierpaoli, E.Pietrobon, D.Plaszczynski, S.Pointecouteau, E.Polenta, G.Ponthieu, N.Popa, L.Poutanen, T.Pratt, G. W.Prezeaul, G.Prunet, S.Puget, J. -L.Pullen, A. R.Rachen, J. P.Rebolo, R.Reinecke, M.Remazeilles, M.Renault, C.Ricciardi, S.Riller, T.Ristorcelli, I.Rocha, G.Rosset, C.Roudier, G.Rowan-Robinson, M.Rubino-Martin, J. A.Rusholme, B.Sandri, M.Santos, D.Savini, G.Scott, D.Seiffert, M. D.Shellard, E. P. S.Smith, K.Spencer, L. D.Starck, J. -L.Stolyarov, V.Stompor, R.Sudiwala, R.Sunyaev, R.Sureau, E.Sutton, D.Suur-Uski, A. -S.Sygnet, J. -F.Tauber, J. A.Tavagnacco, D.Terenzi, L.Toffolatti, L.Tomasi, M.Tristram, M.Tucci, M.Tuovinen, J.Umana, G.Valenziano, L.Valiviita, J.Van Tent, B.Vielva, P.Villa, F.Vittorio, N.Wade, L. A.Wandelt, B. D.White, M.White, S. D. M.Yvon, D.Zacchei, A.Zonca, A.2015-02-202015-02-202015-02-20201410.1051/0004-6361/201321543https://infoscience.epfl.ch/handle/20.500.14299/111593WOS:000345282600013On the arcminute angular scales probed by Planck, the cosmic microwave background (CMB) anisotropies are gently perturbed by gravitational lensing. Here we present a detailed study of this effect, detecting lensing independently in the 100, 143, and 217 GHz frequency bands with an overall significance of greater than 25 sigma. We use the temperature-gradient correlations induced by lensing to reconstruct a (noisy) map of the CMB lensing potential, which provides an integrated measure of the mass distribution back to the CMB last-scattering surface. Our lensing potential map is significantly correlated with other tracers of mass, a fact which we demonstrate using several representative tracers of large-scale structure. We estimate the power spectrum of the lensing potential, finding generally good agreement with expectations from the best-fitting ACDM model for the Planck temperature power spectrum, showing that this measurement at z = 1100 correctly predicts the properties of the lower-redshift, later-time structures which source the lensing potential. When combined with the temperature power spectrum, our measurement provides degeneracy-breaking power for parameter constraints; it improves CMB-alone constraints on curvature by a factor of two and also partly breaks the degeneracy between the amplitude of the primordial perturbation power spectrum and the optical depth to reionization, allowing a measurement of the optical depth to reionization which is independent of large-scale polarization data. Discarding scale information, our measurement corresponds to a 4% constraint on the amplitude of the lensing potential power spectrum, or a 2% constraint on the root-mean-squared amplitude of matter fluctuations at z similar to 2.gravitational lensing: weakmethods: data analysiscosmic background radiationlarge-scale structure of UniversePlanck 2013 results. XVII. Gravitational lensing by large-scale structuretext::journal::journal article::research article