HĂȘche, Jean-FrançoisLiebling, Thomas M.2006-02-132006-02-132006-02-13199710.1016/S0167-6377(97)00051-5https://infoscience.epfl.ch/handle/20.500.14299/222831WOS:000074049000004Given a set P of n points in the plane, we want to find a simple, not necessarily convex, pentagon Q with vertices in P of minimum area. We present an algorithm for solving this problem in time O(nT(n)) and space O(n) , where T(n) is the number of empty triangles in the set.PentagonsMinimum areaPolynomial algorithmsFinding minimum area simple pentagonstext::journal::journal article::research article