Aung, Su HtikeZhao, LichenNonomura, KazuteruOo, Than ZawZakeeruddin, Shaik M.Vlachopoulos, NickSloboda, TamaraSvanstroem, SebastianCappel, Ute B.Hagfeldt, AndersGraetzel, Michael2019-07-042019-07-042019-07-042019-05-0710.1039/c8ta04246bhttps://infoscience.epfl.ch/handle/20.500.14299/158814WOS:000472183200061The anodic electrodeposition method is investigated as an alternative technique for the preparation of a titanium oxide (TiO2) blocking underlayer (UL) for perovskite solar cells (PSCs). Extremely thin Ti-IV-based films are grown from aqueous acidic titanium(III) chloride in an electrochemical cell at room temperature. This precursor layer is converted to the UL (ED-UL), in a suitable state for PSC applications, by undertaking a sintering step at 450 degrees C for half an hour. PSCs with the composition of the light-absorbing material FA(0.85)MA(0.10)Cs(0.05)Pb(I0.87Br0.13)(3) (FA and MA denote the formamidinium and methylammonium cations, respectively) based on the ED-UL are compared with PSCs with the UL of a standard type prepared by the spray-pyrolysis method at 450 degrees C from titanium diisopropoxide bis(acetylacetonate) (SP-UL). We obtain power conversion efficiencies (PCEs) of over 20% for mesoscopic perovskite devices employing both ED-ULs and SP-ULs. Slightly higher fill factor values are observed for ED-UL-based devices. In addition, ED-ULs prepared by the same method have also been applied in planar PSCs, resulting in a PCE exceeding 17%, which is comparable to that for similar PSCs with an SP-UL. The preparation of ED-ULs with a lower sintering temperature, 150 degrees C, has also been examined. The efficiency of a planar PSC incorporating this underlayer was 14%. These results point out to the possibility of applying ED-ULs in flexible planar PSCs in the future.Chemistry, PhysicalEnergy & FuelsMaterials Science, MultidisciplinaryChemistryEnergy & FuelsMaterials ScienceefficientelectrodepositionfilmsToward an alternative approach for the preparation of low-temperature titanium dioxide blocking underlayers for perovskite solar cellstext::journal::journal article::research article