Durand, C.Casset, F.Renaux, P.Abele, N.Legrand, B.Renaud, D.Ollier, E.Ancey, P.Ionescu, A. M.Buchaillot, L.2010-01-082010-01-082010-01-08200810.1109/LED.2008.919781https://infoscience.epfl.ch/handle/20.500.14299/45151WOS:000255317400023A 14-MHz in-plane nanoelectromechanical resonator based on a resonant-suspended-gate (RSG) MOSFET principle and integrated in a front-end process is demonstrated. The devices are in-plane flexural vibration mode beams (L = 10 mum, w = 165 nm, and h = 400 nm) with 120-nm gaps. This letter details the design and process flow fabrication steps. Then, the electrical device characteristics are demonstrated, comprising static and dynamic studies around the resonant frequency. Devices enable the comparison of a pure capacitive detection with the RSG-MOSFET-based detection on the same component, showing a 4.3-dB-huge peak. Due to its output signal amplification and in-IC integration potentialities, the RSG-MOSFET-based detection is ideal for any type of nanoelectromechanical structure displacement detection.MOSFETnanotechnologyresonatorsfrequency 14 MHzfront-end processin-IC integrationin-plane flexural vibration mode beamsin-plane nanoelectromechanical resonatorin-plane silicon-on-nothing nanometer-scale MOSFETnanoelectromechanical structure displacement detectionprocess flow fabricationresonant suspended gate MOSFETsize 10 mumsize 165 nmsize 400 nmin-plane resonatornanometer-scale resonatorresonant suspended gate (RSG) MOSFETsilicon on nothing (SON)In-Plane Silicon-On-Nothing Nanometer-Scale Resonant Suspended Gate MOSFET for In-IC Integration Perspectivestext::journal::journal article::research article