Nguyen, Tu N.Kampouri, StavroulaValizadeh, BardiyaLuo, WenOngari, DanielePlanes, Ophelie MarieZuttel, AndreasSmit, BerendStylianou, Kyriakos C.Kampouri, StavroulaValizadeh, BardiyaLuo, WenOngari, DanielePlanes, Ophélie MarieZüttel, AndreasSmit, BerendStylianou, Kyriakos C.2018-12-132018-12-132018-12-132018-09-1210.1021/acsami.8b10010https://infoscience.epfl.ch/handle/20.500.14299/152037WOS:000444793000004We report the use of two earth abundant molybdenum sulfide-based cocatalysts, Mo(3)S(13)(2-)clusters and 1T-MoS2 nanoparticles (NPs), in combination with the visible-light active metal-organic framework (MOF) MIL-125-NH2 for the photocatalytic generation of hydrogen (H-2) from water splitting. Upon irradiation (lambda >= 420 nm), the best-performing mixtures of Mo3S132-/MIL-125-NH2 and 1T-MoS2/MIL-125-NH2 exhibit high catalytic activity, producing H-2 with evolution rates of 2094 and 1454 mu mol h(-1) g(MOF)(-1) and apparent quantum yields of 11.0 and 5.8% at 450 nm, respectively, which are among the highest values reported to date for visible-light-driven photocatalysis with MOFs. The high performance of Mo3S132- can be attributed to the good contact between these clusters and the MOF and the large number of catalytically active sites, while the high activity of 1T-MoS2 NPs is due to their high electrical conductivity leading to fast electron transfer processes. Recycling experiments revealed that although the Mo3S132-/MIL-125-NH2 slowly loses its activity, the 1T-MoS2/MIL-125-NH2 retains its activity for at least 72 h. This work indicates that earth-abundant compounds can be stable and highly catalytically active for photocatalytic water splitting, and should be considered as promising cocatalysts with new MOFs besides the traditional noble metal NPs.Nanoscience & NanotechnologyMaterials Science, MultidisciplinaryScience & Technology - Other TopicsMaterials Sciencemetal-organic frameworkhydrogenmolybdenum sulfidephotocatalysisvisible lightdriven h-2 productionevolutionefficientmos2separationgrapheneclusters1t-mos2watermofPhotocatalytic Hydrogen Generation from a Visible-Light-Responsive Metal–Organic Framework System: Stability versus Activity of Molybdenum Sulfide Cocatalyststext::journal::journal article::research article